
Typesetting Mathematics with Neateqn

A. G. Rudi

This document briefly introduces Neateqn, an eqn implementation for typesetting

mathematical formulas in Neatroff. For further information about Neatroff and

Neateqn, see http://litcave.rudi.ir/.

The Algorithm

Neatroff follows the rules described in appendix G of Knuth’s Texbook, which

explains Tex’s algorithm for typesetting mathematical formulas. In Tex, sub-for-

mulas of a formula are always typeset in one of eight predefined styles. The for-

mulas inside .EQ/.EN blocks are rendered in displayed styles and inline equations

are rendered in text styles. Their main difference is that in text styles formulas

are vertically more compact to reduce the amount of extra spacing required to be

inserted between lines.

The default value of the parameters of the typesetting algorithm, such as the

position of subscripts, can be changed. These parameters are described in

appendix G of the Texbook and can be modified in Neatroff with Groff eqn-style

“set” commands. See the Groff eqn manual page or the Texbook for a list and

explanations.

Defining Custom Brackets

It is possible to adjust the default brackets or to define new ones. Two commands

are available for this purpose: one for specifying different bracket sizes (bracket-

sizes) and one for specifying bracket building glyphs (bracketpieces):

bracketsizes sign N glyph1 glyph2 ... glyphN

bracketpieces sign top mid bot cen

In these commands, sign is the token placed after the “left” and “right” keywords

in equations. In the bracketsizes command, the glyphs should be ordered based

on their size with the smallest glyph appearing first. Neateqn tries the specified

1

glyphs in the same order until it finds the glyph that is large enough for the

enclosed formula. If this fails, it tries to build the bracket if its pieces are defined

(by default or with bracketpieces). The four arguments of bracketpieces specify

the glyphs required for building the bracket. The last argument can be empty if

the bracket has no centre (\(lk is the centre of {, for instance).

As an example, the following lines show how the default opening and closing

parenthesis can be defined:

bracketpieces ("\(LT" "\(LX" "\(LB" ""

bracketpieces) "\(RT" "\(RX" "\(RB" ""

The following lines do the same for braces:

bracketpieces { "\(lt" "\(bv" "\(lb" "\(lk"

bracketpieces } "\(rt" "\(bv" "\(rb" "\(rk"

The following line instructs Neateqn to use Tex’s open parenthesis glyphs with

different sizes (note that in Neatroff \N’gid’ is the glyph with device-dependent

name gid):

bracketsizes (5 "(" "\N’parenleftbig’" "\N’parenleftBig’"

"\N’parenleftbigg’" "\N’parenleftBigg’"

Adjusting the Syntax

The logic used in eqn to partition equations may seem odd to new users; for

instance in “O(n sup 2)”, the expected result may be O(n2), instead of O(n2). Even

experienced eqn users occasionally make these mistakes and some insert spaces

around most tokens to prevent possible surprises. Equations like “O (n sup 2

)”, which prevent most of these problems, are not as readable as the alternative,

however. This issue is one of the main advantages of Tex’s more concise syntax. In

Neateqn it is possible to make equations like the first work.

Neateqn splits (chops) equations at specific characters. Equations are always

chopped at spaces and before and after open and close braces. By default,

equations are also chopped before and after ^, ~, and " (but this can be changed).

The -c option of Neateqn allows specifying the characters around which equations

are chopped. For instance, if “~^"(),” is passed with -c to Neateqn, “O(n sup 2)”

is interpreted as “O (n sup 2)”. This may be considered an improvement, but a

2

more important advantage in the author’s opinion is that these characters may be

redefined. For instance, one may redefine open and close parenthesis as follows:

define (@{ left "(" @

define) @right ")" }@

Then, it is possible to write “(a over b) sup (c + 5)” to get
(

__a
b

)

(c+5)
. Note that macro

arguments are never split away from the macro name, thus one can safely call

“log(a, n)”, if log is defined as “roman "log" sub {$1}({$2})”.

Assigning Character Type

Neateqn determines the spacing between characters in an equation based on their

type (see chapter 18 of the Texbook for more information). It is possible to specify

or change the type of a character in Neateqn with the “chartype” command. Pos-

sible types are “ord” for ordinary atoms, “op” for large operators, “bin” for binary

operators, “rel” for relations, “open” for opening brackets, “close” for closing

brackets, “punct” for punctuations and “inner” for fractions. As an example, the

following line declares backslash as a binary operator:

chartype bin \(rs

The second argument of the “chartype” command should be a Troff character

name. If the operator is not a character, it can be defined as one. For instance,

for “>>” and “log” operators, one may define the following two characters (note

that the following two lines are Neatroff requests and should be placed outside

.EQ/.EN blocks):

.char \[eqn.log] "log

.char \[eqn.>>] ">\h’-.1n’>

Then, the type of the operators can be specified as explained above:

chartype op \[eqn.log]

chartype rel \[eqn.>>]

Finally, macros like the following may be defined to improve readability:

define >> @\[eqn.>>]@

define log @\[eqn.log]@

3

Breaking Equations

Neateqn can break equations after top-level operators; This is important especially

when there are long inline equations in the text. The “breakcost” command can

specify the cost of a line break after different character types: its first argument

is the character type, as enumerated in the previous section, and its second argu-

ment is the cost of line breaks after the given character type. Costs are specified

via Neatroff’s \j escape sequence (The document “Neatroff Introduction” explains

the meaning of these costs). The default values are:

breakcost rel 100

breakcost bin 200

breakcost punct 1000

A value of 0 disables breaking equations for the specified character. Note that

Neateqn breaks equations after top-level operators only. Thus, equations sur-

rounded by braces will not be broken. The following command instructs Neateqn

never to break equations:

breakcost any 0

Using Tex Mathematical Symbols

In order to use Tex’s mathematical symbols in Neatroff, CMEX10 and CMSY10 fonts

(or their equivalents, for instance TXEX and TXSY for Txfonts or PXEX and PXSY for

Pxfonts) should be mounted and declared as the special font of eqn Roman font

(the font declared as grfont in Neateqn).

.fp - CMEX CMEX10

.fp - CMSY CMSY10

.fspecial R CMEX CMSY

If the italic font lacks Greek characters, CMMI10 (or its equivalents, like RTXMI for

Txfonts or RPXMI for Pxfonts) can be mounted and declared as a special font of

eqn italic font (the font declared as gfont in Neateqn).

.fp - CMMI RPXMI

.fspecial I CMMI

Standard symbols can also be redefined to use Computer Modern glyphs, like

4

those for summation and product:

define sum @{vcenter roman "\N’summationdisplay’"}@

define tsum @{vcenter roman "\N’summationtext’"}@

define prod @{vcenter roman "\N’productdisplay’"}@

define tprod @{vcenter roman "\N’producttext’"}@

Retrieving and installing Pxfonts and Txfonts

These fonts are optional and Neatroff will run fine without them. This document

can make use of these fonts; see the instructions below.

Download both fonts from CPAN:

https://ctan.org/pkg/pxfonts (link)

https://ctan.org/pkg/txfonts (link)

Unpack both archives in separate directories. In each directory copy the contents

of the contained “afm” and “pfb” directories into the “fonts” directory under

neatroff_make. Then, edit neateqn.ms (source of this document): Search for

“Change this section” and comment/uncomment a few lines as described there.

Finally, submit ’make neat’ in neatroff_make again, then submit ’make clean all’ in

this folder (“demo”).

5

https://ctan.org/pkg/pxfonts
https://ctan.org/pkg/txfonts

Some Samples For Different Fonts

Palatino and Computer Modern mathematical symbols:

(x + y)n =
∑

n

i=0

(

n

i

)

xiyn−i

[a] +
(

__a
b

)

+

x + __a

b

y + __c
d

+ √a +
√

__a
b

+

√

√

√

√

√

√

x + __a

b

y + __c
d

Palatino and Pxfonts mathematical symbols:

(x + y)n =
∑

n

i=0

(

n

i

)

xiyn−i

[a] +
(

__a
b

)

+

x + __a

b

y + __c
d

+ √a +
√

__a
b

+

√

√

√

√

√

√

x + __a

b

y + __c
d

Times Roman and Txfonts mathematical symbols:

(x + y)n =
∑

n

i=0

(

n

i

)

x iyn−i

[a] +
(

__a
b

)

+

x + __a

b

y + __c
d

+ √a +
√

__a
b

+

√

√

√

√

√

x + __a

b

y + __c
d

Computer Modern:

(x+ y)n =
∑

n

i=0

(

n

i

)

xiyn−i

[a] +

(

__a
b

)

+

x+ __a

b

y+ __c
d

+
√

a+

√

__a
b
+

√

√

√

√

√

x+ __a

b

y+ __c
d

6

	The Algorithm
	Defining Custom Brackets
	Adjusting the Syntax
	Assigning Character Type
	Breaking Equations
	Using Tex Mathematical Symbols
	Retrieving and installing Pxfonts and Txfonts
	Some Samples For Different Fonts

