
Neatroff

Ali Gholami Rudi

Updated in April 2018

Neatroff is a new implementation of Troff typesetting system in C programming

language, which tries to address, as neatly as possible, some of the shortcomings

of the original Troff based on the ideas and features available in Plan 9 Troff,

Heirloom Troff, and Groff. The latest versions of Neatroff, its PostScript and PDF

post-processor, Neatpost, and its eqn preprocessor, Neateqn, are available at their

home page (link). This document enumerates Neatroff’s features, its new requests,

and its differences compared to other Troff implementations. On the other hand,

the document “Getting Started with Neatroff” (link) explains how to set up and

use Neatroff.

1

http://litcave.rudi.ir/
http://litcave.rudi.ir/neatstart.pdf

Noteworthy Features

The following list describes the main extensions of Neatroff compared to the

original Troff (many of these extensions are available in Groff and Heirloom Troff

as well). The number register .neat, which is always one in Neatroff, can be used

to distinguish Neatroff from other Troff implementations.

UTF-8 encoding

In Neatroff, input files and characters, glyph names, ligatures, hyphenation

patterns and dictionary, as well as quoted escape sequence delimiters and

arguments of commands like .tr, .hc, .tc, .lc, .mc, and .fc are in UTF-8 encod-

ing.

Long macro, register, and environment names

When not in compatibility mode (activated with -C command line option

or the .cp request, as in Groff), Neatroff supports long macro, register, and

environment names. It also supports Groff-style escape sequences with long

arguments (for \[], *[], \$[], \f[], \g[], \k[], \m[], \n[], and \s[]) and inter-

polating string registers with arguments (*[xyz arg1 arg2 ...]). Note that like

Groff, Neatroff supports named environments and is not limited to original

Troff’s three fixed environments.

Advanced font features, ligature, and pairwise kerning

Neatroff and Neatmkfn (which generates Neatroff’s font descriptions) support

many of the advanced font features available in OpenType fonts. In a font, a

set of substitution and positioning rules may be specified, which are grouped

into several features and scripts. In Neatroff, features can be enabled with

.ff and the active script and language can be selected with .ffsc. Neatmkfn

supports PostScript Type 1 fonts, TrueType fonts (TTF), and OpenType fonts

(OTF). For the latter, however, it cannot extract glyph bounding boxes, which

is used by the Neateqn preprocessor. Therefore, if an OpenType font is sup-

posed to be used in Neateqn blocks, it should be converted to TrueType first

(the script that comes with Neatmkfn does this automatically).

2

Whole paragraph text formatting

Neatroff supports filling whole paragraphs at once, to achieve more uniform

word spacing. Like Heirloom Troff, the .ad request accepts arguments p or pb,

pl, and pr, which are equivalent to b, l, and r, except that the filling is done for

whole paragraphs, i.e., words are collected until a line break is issued. This

inevitably changes the behaviour of some requests and traps: several lines

may be collected and ready to be output while executing them. For the end

macro, Troff invokes the macro specified with .em request without flushing

the last incomplete line. Neatroff follows the same behaviour even when

formatting whole paragraphs and does not write any of the collected lines to

the output. Since after the end macro no new page is started, collected lines

may be unexpectedly written to the end of the last page of the document. To

change that, the end macro can invoke the .br request. For requests that cause

break, using ' as the control character prevents writing any line of the collected

paragraph to the output, as expected. The exception to this rule is 'br, which

formats the words collected so far and outputs all resulting lines except the

final incomplete line (this is useful, for instance, for footnotes, which should be

inserted in the same page).

Paragraph formatting algorithm

For deciding at what points to break a paragraph into lines, Neatroff assigns

a cost to each possible outcome: a cost of 100 is assigned to each stretchable

space that has to be stretched 100 percent. The cost grows quadratically and

the cost of stretching a space 200 percent is 400. There are requests that adjust

the algorithm Neatroff uses for performing paragraph formatting. The .hycost

request changes the cost of hyphenating words. The default value is zero. The

\j escape sequence, as in Heirloom Troff, specifies the extra cost of line break

after a word; for instance, in “Hello\j’10000’ world”, the words are not split by

the line breaking algorithm, unless absolutely necessary (i.e., if other options

are more costly). The escape sequence \~ introduces non-breakable stretch-

able space. Also, to prevent paragraphs with very short last lines, the .pmll

(paragraph minimum line length) sets the minimum length of a formatted

line, specified as a percentage of \n(.l; “.pmll 15”, for instance, ensures that the

length of last line of each paragraph is at least 15% of its other lines; otherwise,

a cost proportional to the value specified as its second argument is added.

3

Controlling word spaces

The .ssh request sets the amount (in percentage) by which the stretchable

spaces in a line may be shrunk while formatting lines. The default value is

zero. Also, the second argument of .ss request specifies sentence space, as in

Groff or Heirloom Troff.

Macros and their arguments

In a macro, \$* is replaced with macro’s argument separated by spaces. \$@

is like \$*, but quotes the arguments as well. \$^ is like \$@, except that it

escapes the double quotes in the arguments. The arguments can be shifted

with .shift request. Neatroff also supports blank line macro (.blm) and leading

space macro (.lsm).

Text direction

Neatroff supports text direction to render right-to-left languages. .<< and

.>> requests specify text direction and \< and \> escape sequences change it

temporarily for including words in the reverse direction. The value of number

registers .td and .cd indicate the current text and temporary directions respec-

tively; zero means left-to-right and one means right-to-left. Neatroff starts

processing text direction, after the first invocation of .<< or .>>.

Keshideh justification and cursive scripts

A new adjustment type (.ad k) allows inserting Keshideh characters before

justifying text with hyphenation and spaces. Neatroff also supports cursive

scripts, which require connecting glyphs at their cursive attachment positions,

as defined in the fonts.

Font manipulation

In Neatroff, the mapping between Troff character names and glyphs in a font

can be modified with .fmap request: “.fmap F C G” maps Troff character C

to the glyph with device-specific name G for font F. When this glyph does

not exist in F, Neatroff assumes that the character C is not present in the font.

When G is missing, the effect of .fmap for character C is cancelled. Neatroff

also implements Groff’s .fspecial and .fzoom requests: after “.fspecial FN S1 S2

...”, when the current font is FN, the fonts S1, S2, ... are assumed to be special.

4

Also, “.fzoom FN zoom” scales font FN by the second argument after dividing

it by 1000.

Colour support

Neatroff supports colours with .cl request and \m[] escape sequence. Unlike

Groff, colours need not be defined beforehand and can be specified directly.

The argument of \m can be predefined colour names (e.g. blue), predefined

colour numbers (0 for black, 1 for red, 2 for green, 3 for yellow, 4 for blue, 5 for

magenta, 6 for cyan, and 7 for white), #rgb and #rrggbb for specifying colours

in hexadecimal RGB format, #g and #gg for specifying grey with the given

hexadecimal level, and empty (\m[]) for the previous colour. The current

colour is available in .m number register.

Hyphenation language

The .hpf request loads hyphenation patterns, exceptions, and character map-

pings from the addresses specified via its arguments. The specified files

should contain nothing but utf-8 patterns, exceptions and mappings respec-

tively (i.e. no TeX code), just like the files whose names end with .pat.txt,

.hyp.txt and .chr.txt in CTAN for TeX (link). The .hpfa request is like .hpf,

except that it does not clear the previous hyphenation patterns and exceptions.

The second and third arguments of these requests are optional. With no argu-

ments, these requests load English hyphenation patterns and exceptions. Also

the “.hcode abcd...” request, assigns the hyphenation code of b to a and the

hyphenation code of d to c; initially all upper-case ASCII letters are mapped to

their lower-case forms.

Filled drawing objects

Neatroff supports Groff-style polygons and filled drawing objects (p, C, E and

P commands for \D escape sequence). In Neatroff, however, there is no spe-

cific background colour; objects are filled with the current colour (.m number

register). Furthermore, in Neatroff the edges of polygons can be lines, arcs,

or splines; a letter among the arguments of \D’p ..’ specifies the type of the

subsequent edges: ‘l’, ‘a’, and ‘~’ for lines, arcs, and splines respectively.

5

ftp://ftp.ctan.org/tex-archive/language/hyph-utf8/tex/generic/hyph-utf8/patterns/txt/

Conditional escape sequence

Neatroff supports a new escape sequence for conditional interpolation: the

escape sequence \?’cond@expr1@expr2@’, evaluates cond (exactly as if it is

a .if condition) and interpolates expr1, if the condition is true, and expr2,

otherwise. The delimiter (@ in this example) can be any character that cannot

be part of the condition; for numerical expressions, for instance, it cannot

be a digit, an operator sign, or a scale indicator, unless separated from the

condition with \&. The final delimiter, and even expr2, may be omitted, thus

\?’cond@expr’ is valid; Neatroff interpolates expr if cond is true.

Neatpost-specific device commands

Neatpost can produce both PostScript and PDF. The escape sequences \X’eps

img.eps [width [height]]’ and \X’pdf img.pdf [width [height]]’ in Neatroff

instruct Neatpost to include the given EPS or PDF file; the former works only

when the output is PostScript and the latter when the output is PDF. They

include the given EPS/PDF file with its lower left corner at the current point.

If the width or height are given (in basic units), the image is scaled appro-

priately. Neatroff also supports \X’rotate deg’ for rotating the current page

around the current point.

Helper Macro Packages

In addition to the standard Troff macro packages, such as -ms, -mm, and

-me, which are imported from Plan 9 Troff, Neatroff comes with a few

convenient helper macro packages as follows (these macros are included in

neatroff_make): for drawing simple tables without the tbl preprocessor -mtbl,

for including EPS and PDF images -meps, for drawing simple charts and

graphs -mgr, for floating objects -mkeep. Some Groff-specific macros are

implemented in -mgnu, such as open, opena, close, write, pso, and mso. Also,

-men and -mfa include -ms-like macros for creating short English and Farsi

documents.

6

Summary of New Requests

This is the list of new requests available in Neatroff compared to those docu-

mented in “Troff User’s Manual” by Ossanna and Kernighan.

.ad p* b E

With values pl, pr, pb, and p, this request instructs Neatroff to perform whole-

paragraph line formatting. Also, the value k enables Keshideh justification (kp

is the equivalent for whole-paragraph formatting).

.blm M – –

Specify the blank line macro. If specified, each blank line is treated as an

invocation of this macro.

.chop R – –

Remove the last character of a string register.

.cl C 0 E

Change text colour. The current colour is available in the number register

\n(.m. With no arguments, the previous colour is selected. The format of the

argument and the \m escape sequence are described in the previous section.

.co SRC DST – –

Copy the contents of register SRC into register DST.

.co+ SRC DST – –

Append the contents of register SRC to register DST.

.co> R F – –

Copy the contents of register R into file F.

.co< R F – –

Read the contents of register R from file F.

7

.char C DEF – –

Define Troff character C. If DEF is missing, previous definitions for character

C are removed.

.ochar FN C DEF – –

Define Troff character C only for font FN. If DEF is missing, previous defini-

tions for character C are removed.

.rchar C – –

Remove the definition of character C.

.eos S T S=.?! T=’")]* –

Specify sentence characters. The first argument specifies the characters that

end a sentence and the second argument specifies the characters ignored after

them.

.fzoom F N 1000 –

Magnify the given font by N/1000.

.fp N F L – –

In Neatroff, if instead of the position of the font to be mounted, N is a dash, the

position of the font is decided automatically: if a font with the same name is

already mounted, the same position is reused. Otherwise the font is mounted

on the next available position.

.ff F +F1 -F2 – –

Enable or disable font features; the first argument specifies the font and the

rest of the arguments specify feature names, prefixed with a plus to enable or

a minus to disable. When a feature is enabled, all substitution and positioning

rules of a font with that feature name are applied when laying out the glyphs.

.ffsc F SC LN – –

Specify font’s script and language. A Neatroff font description specifies a set

of rules for each script and language, grouped into several features. With this

request, only the rules for the specified script and language are enabled. By

8

default, or when SC is missing, all scripts are selected. When LN is missing,

the rules of the default language of the selected script are enabled.

.fspecial F S1 S2 – –

Set special fonts when the current font is F.

.fmap FN CH GID – –

Map Troff character CH to glyph with device dependent name GID for font

FN. When gid is missing, the effect of mapping CH is cancelled. Neatroff

implicitly calls .fmap for all aliases in font descriptions (character definitions

whose second column is ").

.hycost N N2 N3 0 E

Change the cost of hyphenating words when adjusting lines. An argument

of 100 assigns to each hyphenation the cost of stretching a space one hundred

percent while formatting. The second and third arguments specify additional

costs for two and three consecutive hyphenated lines (only when formatting

whole paragraphs).

.hlm n 0 E

Set the maximum number of consecutive hyphenated lines (only when for-

matting whole paragraphs). The current value is available via \n[.hlm]. An

argument of zero or a negative number implies no limitation.

.hydash C \:\(hy\(en\(em-\-\(-- –

Specify the list of characters after which words may be broken (even when

hyphenation is disabled) without inserting hyphens.

.hystop C \% –

Specify hyphenation inhibiting characters. Words containing any of the given

characters are not hyphenated, unless after dashes (characters specified via

.hydash) or hyphenation indicators (\%).

9

.hpf P H C – –

Set hyphenation files for patterns, exceptions, and mappings. With no argu-

ments, loads English hyphenation patterns and exceptions.

.hpfa P H C – –

Like, .hpf, but do not clear the previous hyphenation patterns.

.hcode abcd... – –

Assign the hyphenation code of b to a and the hyphenation code of d to c.

.in2 0 E

Right-side indentation. The current right-side indentation is available in

register \n(.I.

.ti2 0 E

Right-side temporary indentation.

.kn N 1 E

Enable or disable pairwise kerning (current value available through \n[.kn]).

.lsm M – –

Specify the leading space macro. If specified, for each line with leading spaces,

this macro is invoked. The register \n[lsn] holds the number of leading spaces

removed from the line.

.pmll N C 0 E

Set paragraph minimum line length in percentage. To shorter lines, Neatroff

assigns a cost proportional to the value specified as the second argument (or

100, if missing) when formatting paragraphs. Number registers \n[.pmll] and

\n[.pmllcost] store the values passed to .pmll.

.>> .<< left-to-right E

Render text in left-to-right or right-to-left direction. See the first section for an

explanation of escape sequences \> and \<.

10

.shift N – –

Shift macro arguments by N positions.

.ssh N 0 E

Set the amount stretchable spaces in formatted lines may be shrunk in per-

centage (available through \n[.ssh]).

.ss M N M=12 N=12 E

The second argument sets sentence space size (available in \n[.sss]).

.tkf FN S1 N1 S2 N2 – –

Enable track kerning for font FN. If the point size is at most S1, the width of

each character is increased by N1 points, if it is at least S2, the width of each

character is increased by N2 points, and if it is between S1 and S2, the width

of each character is increased by a value between N1 and N2, relative to the

difference between the current point size and S1.

11

Notes

The standard macro packages

The standard Troff macro packages and a top-level build script to obtain and

install Neatroff are available in neatroff_make git repository (link). “Getting

Started with Neatroff” (link) explains how to use this repository.

Formatting equations with Neateqn

Neateqn is an eqn preprocessor for Neatroff. It implements many of the

extensions introduced in Groff’s eqn preprocessor. It can use TeX’s Computer

Modern-style bracket-building symbols, if available. “Typesetting Mathemat-

ics with Neateqn” (link) introduces Neateqn.

Generating the output device

The Neatmkfn program (link) generates Neatroff font descriptions for AFM or

TrueType fonts (OpenType fonts are converted to TrueType first). It includes a

script to create a complete output device for Neatroff.

Missing requests

A few requests of the original Troff are not implemented: .pi, .cf, .rd, .pm, .ul,

.cu, .uf, \H, and \S.

Porting and distribution

Given that Neatroff, Neatpost, Neatmkfn, and Neateqn can be compiled with

Neatcc, porting them to other Unix variants besides Linux should not be

difficult. Note that Neatroff is released under the ISC licence.

List of OpenType font features

As mentioned in previous sections, font features can be enabled and disabled

with .ff request. For the list of OpenType features in general and their descrip-

tions, see the list of typographic features in Wikipedia (link) or OpenType

specification (link).

12

http://litcave.rudi.ir/
http://litcave.rudi.ir/neatstart.pdf
http://litcave.rudi.ir/neateqn.pdf
https://github.com/aligrudi/neatmkfn
https://en.wikipedia.org/wiki/List_of_typographic_features
http://www.microsoft.com/typography/OTSPEC/featurelist.htm

Font Description Files

The format of font description files in Neatroff, although still mostly backward

compatible, has been slightly changed. The value of special, spacewidth, and

ligatures parameters retain their old meanings; sizes and name parameters are

ignored, however. The value of the fontname parameter in Neatroff specifies the

device name of the font (e.g. Times-Roman); Neatpost uses it to map Troff fonts to

PostScript fonts. In the charset section, the forth field is always the device-specific

name of the glyph (accessible with \N escape sequence) and the optional fifth

field specifies glyph’s code (the fourth field of the original Troff).

In addition to the old charset section of the original Troff, Neatroff supports a

new syntax for defining characters and kerning pairs. Lines starting with the

word “char” define characters (similar to lines in the charset section) and lines

starting with “kern” specify kerning pairs. For the latter, “kern” is followed by

three tokens: the name of the first glyph, the name of the second glyph, and the

amount of kerning between them. Specifying the name of glyphs (the fourth field

after “char”) instead of character names allows specifying kerning pairs for glyphs

not mapped to any characters (may be later with .fmap request) or specifying

kerning pairs only once for all aliases of a character. Here are a few lines of a font

description file for Neatroff, created with Neatmkfn.

name R

fontname Times-Roman

spacewidth 25

ligatures fi fl 0

the list of characters

char ! 33 2 exclam 33

char . 25 0 period 46

char A 72 2 A 65

char B 67 2 B 66

char C 67 2 C 67

the kerning pairs

kern A C -5

kern A period -1

The width column of the character definition lines can optionally include four

more numbers, separated with commas, that describe the bounding boxes of the

13

glyphs. The bounding boxes are used in the \w escape sequence; after this escape

sequence, the value of the bbllx, bblly, bburx and bbury number registers are

modified to represent the bounding box of the argument of \w.

To use the advanced features present in TrueType and OpenType fonts,

Neatroff supports lines that define substitution and positioning rules (lines start-

ing with “gsub” and “gpos” respectively). Note that unlike Heirloom Troff, which

implements non-contextual single-character substitutions, Neatroff implements

many of the more complex OpenType substitution and positioning features. The

following example shows how such features are defined in Neatroff font descrip-

tions:

gsub liga:latn 4 -gl1 -gl2 -gl3 +gl123

gpos kern:latn 2 gl1:+0+0-5+0 gl2

In this example, the first line defines a 3-character ligature (with feature name “li-

ga” and script name “latn”) and the second defines pairwise kerning for the pair

of glyphs gl1 and gl2 (decreasing the horizontal advance of gl1 by 5 basic units;

with feature name “kern” and script name “latn”). The patterns can be longer and

more detailed, defining context or glyph groups, to support OpenType features

that require them; for examples, see the files generated by Neatmkfn.

14

Source Code Organization

The following figure shows where Neatroff’s major layers and features are imple-

mented in its source tree.

in.c
Input handling

cp.c
Copy-mode interpretation

tr.c
Troff request/macro execution

ren.c
Rendering, traps, and diversions

out.c
Generating Troff output

reg.c Registers and environments

wb.c Word buffer

eval.c Integer expression evaluation

fmt.c Line formatting

dev.c Output device

font.c Fonts

hyph.c Tex hyphenation

dir.c Text direction

15

	Noteworthy Features
	Summary of New Requests
	Notes
	Font Description Files
	Source Code Organization

