
The NEATCC C Compiler

Ali Gholami Rudi

NEATCC is a small C compiler that implements a large subset of ANSI C. Despite

its size, NEATCC implements effective optimizations and generates code for

different architectures. In this document, I shall briefly introduce NEATCC, its

intermediate code, its final code generation interface, and some other details that

seem helpful for inspecting its source code and extending it.

Overview

In NEATCC, compilation phases are implemented in different source files, which

use the interfaces declared in ncc.h to interact. The main components of NEATCC

are implemented in the following files.

cpp.c Preprocessing.

tok.c Tokenisation.

ncc.c Parsing and directing compiler phases.

int.c Intermediate code generation.

gen.c Register allocation and sending intermediate code to backends.

reg.c Global register allocation.

x64.c Final code generation (x86.c and arm.c as well).

Most NEATCC optimizations are performed on the intermediate code (imple-

mented in int.c), such as using instruction immediates, removing unused values,

or constant folding; they are enabled when the optimization level is at least

one. For global register allocation, NEATCC performs liveness analysis for local

variables when the optimization level is two; level one enables a simpler register

allocation algorithm and zero disables global register allocation altogether.

Intermediate Code

NEATCC’s parser (ncc.c) calls some of the functions defined in int.c (prefixed with

1

“o_”), to generate the intermediate code. The latter also performs optimizations

on the generated intermediate code, such as constant folding, in functions prefixed

with “io_”. The intermediate code is stored as an array of ic struct, which is

defined as follows:

struct ic {

long op; /* instruction opcode */

long a1; /* first argument */

long a2; /* second argument */

long a3; /* third argument, jump target, argument count */

long *args; /* call arguments */

};

The arguments of instructions can be compiler temporaries (or intermediate

values), immediates, branch instruction targets, local identifiers, and symbol

identifiers. A compiler temporary is specified as positive integer, indicating the

instruction that defines them (thus, the value of compiler temporaries cannot be

changed, once defined). For instance, temporary number 5 is the output in the 5th

intermediate code instruction, which may define it to be the result of adding two

other temporaries.

Instruction opcode (ic->op) can be one of the macros prefixed with “O_” in

ncc.h; ic->op also specifies the type of the operands with O_MK macro.

O_ADD: Performs addition for temporaries ic->a1 and ic->a2; the same

applies to other binary instructions such as O_SUB.

O_ADD|O_NUM: Similar to O_ADD except that ic->a2 is an immediate.

O_NEG: Negates ic->a1; the same applies to other unary instructions like

O_NOT.

O_CALL: Calls a function, whose address is stored in ic->arg1. ic->a3 speci-

fies the number of arguments and ic->args is the list of arguments.

O_CALL|O_SYM: Similar to O_CALL, except that the function is specified as a symbol

identifier (instead of a temporary containing the address of the func-

tion) in ic->a1.

O_MOV: Assigns the value of ic->a1, casting the value according to O_T(ic-

>op), if necessary.

O_MOV|O_NUM: Like O_MOV, but loads ic->a1 as an immediate.

2

O_MOV|O_SYM: Like O_MOV, but loads the address of the given symbol ic->a1 with

offset ic->a2.

O_MOV|O_LOC: Like O_MOV, but loads the address of the given local variable ic-

>a1 with offset ic->a2.

O_MSET: Performs memset() with the given arguments.

O_MCPY: Performs memcpy() with the given arguments.

O_RET: Returns ic->a1 from a function.

O_LD|O_NUM: Loads the value of the address specified as ic->a1 with offset ic-

>a2; the same applies to O_ST for storing values, with the exception

that the first argument is the destination and the second argument is

the address.

O_LD|O_SYM: Like O_LD|O_NUM, except that ic->a1 specifies a symbol.

O_LD|O_LOC: Like O_LD|O_NUM, except that ic->a1 specifies a local.

O_JMP: Unconditional branch to instruction ic->a3.

O_JZ: Conditional branch to instruction ic->a3, if ic->a1 is zero (O_JNZ for

nonzero).

O_JCC: Conditional branch to instruction ic->a3, if the given relation (ic-

>op & 0x0f) holds for ic->a1 and ic->a2.

Stack Frame Layout

NEATCC uses the following stack frame layout for function. Note that, some of

these sections may be omitted for functions that do not require them.

[STACK ARGUMENTS]

[SAVED REGISTER ARGUMENTS]

[THE PREVIOUS VALUE OF IP]

[THE PREVIOUS VALUE OF FP] <- FP points here

[LOCAL VARIABLES]

[COMPILER TEMPORARIES]

[SAVED REGISTERS]

[FUNCTION ARGUMENTS]

[NEXT FRAME] <- SP points here

Final Code Generation

The functions whose names begin with “i_” are the low-level architecture-specific

3

code generation entry points. For each output architecture, a header (e.g., x64.h) is

included and these entry points are implemented in a C file (e.g., in x64.c).

The function i_reg(op, md, m1, m2, m3, mt) returns the mask of allowed

registers for each operand of an instruction. The first argument op, specifies the

instruction (O_* macros); i_reg() sets the value md, m1, m2, and m3 to indicate the

mask of acceptable registers for the destination, first, second, and third operands

of the instruction. For immediates, the corresponding argument indicates the bit

width of the operand (e.g., 8 means the operand is encoded in 8 bits). The value

of these masks may be changed to zero to indicate fewer than three operands. If

md is zero and m1 nonzero, the destination register should be equal to the first

register, as is common in some CISC instructions. mt denotes the mask of registers

that may lose their contents after the instruction. The function i_ins() generates

code for the given instruction. The arguments indicate the instruction and its

operands.

Some macros should be defined in architecture-dependent headers and a few

variables should be defined for each architecture, such as tmpregs, which is an

array of register numbers that can be used for holding temporaries and argregs,

which is an array of register numbers for holding the first N_ARGS arguments.

Consult x64.h, as an example for the macros defined for each architecture.

Compiling NEATCC

The neatcc_make GIT repository, includes a makefile to obtain and build neatcc,

neatld, and neatlibc (and a few other programs). To do so, use the following

commands:

$ git clone git://repo.or.cz/neatcc_make.git

$ cd neatcc_make

$ make init # fetches the required programs

$ make neat # compiles the programs using the host compiler

$ make boot # compiles neatcc using itself

$ cd demo && make # to make sure it works

The output architecture is x86-64 by default. To compile for other architectures,

the value of OUT Makefile variable can be changed. For instance, the following

commands build and bootstrap neatcc for ARM32:

$ make OUT=arm neat

4

$ make OUT=arm boot

After compilation, the neatcc excutable in neatrun directory can be invoked as a

C compiler. It executes the linker or the compiler based on the presence of -c

option.

5

	Overview
	Intermediate Code
	Stack Frame Layout
	Final Code Generation
	Compiling s-1NEATCCs+1

